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SUMMARY

A method based on assumptions simllar to those of Munk's
alrship theory and R.T. Jones! low—aspect—ratlo pointed-wing
theory has been developed to determine simple closed expressions
for the load distribution, 1ift, pitching moment, and center—of—
pressure position of inclined slender wing-body configurations
having flat-plate wings extending along the continuation of the
horizontal diameters of circular fuselage sections. Expressions
for the asrodynamic properties of triangular wings in combination
with conlcal bodies, semi—infinite cylindrical bodies, and bodies
pointed at the nose but cylindrical at the wing root have been
developed in detall for all ratlos of body diameter to wing span.
In all cases, the lift—curve slope of the wing-body combination was
less than that of the wing alone. For the case of the triangular
wing and the body pointed at the nose but cylindrical at the wing
root, the loss In lift-curve slope reached a maximum of 25 percent
at.the large diameter—span ratio of 0.707. With a conical body
mounted on the same wing, the maximum loss of lift~curve slope was
only about 8 percent and ocourred at sbout the same diameter—span
ratio.

It i1s shown that the results are applicable at subsonic and
transonlic speeds, and at supersonic speeds, provided the entire
wing-body combination lies near the center of the Mach cone.
Furthermore, it 1s pointed out that the assumptions related to the
study of low-aspect—ratio pointed bodies and the study of moderate—
agpect—ratio pointed bodles traveling at sonlc speed both lead from
Prandtl's linearized equation for compressible flow to the two—
dimensional Laplace's equation in the t.ra.nsverse pla.ne although by
different means.
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The determinstion of the potential distribution for an inclined
moderate—aspect—ratio wing at sonic speed is therefore mathematically
equivalent to the determination of the potential distribution for an
inclined low-espect—ratio wing in an incompressible fluid.

INTRODUCTION

In the quest for airplane configurationé having aerocdynamic
propertles favorable for supersonic flight, one of the more )
rromising conflgurations involves the use of a low-espect—ratio
wing. When the gemeral layout of such an airplane is considered,
however, comparatively large fuselages are often found necessary. It
thus becames importent to study the aerodynamics of a complete wing—
body combination throughout the entire Mach number range of the air—
Plane. In an Incompressible medium, the mutusl interference of a
fuselage and wing of high-aspect ratio (to which lifting-line theory
is applicable) has been treated by Lemnertz, Wieselsberger, Pepper,
and Multhopp .In references 1, 2, 3, and 4. It is the purpose of this
note to treat the effect on the aserodynamic loading of the mutual
interference between a low-aspect-ratio polnted wing and a fuselage
consisting of & slender body of revolution.

The aerodynamic properties of slender wing-body configurations
may be approximated by the method originaelly used by Munk in studying
the aerodynemics of slender ailrships (reference 5). R. T. Jones
(reference 6) applied this method to the study of low-espect—retio
pointed wings and Ribner (reference T) extended 1t to determine the
stabllity derivatives of low—espect—ratlo triangular wings. The
esgentlal polnt in the study of slendsr bodiles by this method is the
fact that the flow 1s approximately two—dimensional when viewed in
planes perpendicular to the direction of motion. Methods of classlcal
hydrodynemics may then be employed to determine the load distribution,
1ift, and center of pressure.

It has been shown by Teien, Laitone, and R. T. Jones (references
8, 9, and 6) that the aerodynamic properties of very slender bodies
of revolution and low-espect—ratio wings at small angles of attack
are vnaffected by compressibility at subsonlc and supersonlc speeds.
A giwmilar result will be shown for slender wing-body combinations,

SYMBOLS

L 2
A aspect ratio( :.-géx—
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cross—section area of body of revolution (na2)

cross—sectlon area of base of body of revolution

volumse

mean cross section of body of revolution |—m——
ength

1ift coefficient <:—s>

1lift—curve slope <%L>

1ift coefficlient of wing without body

pltching moment coefficient <'q__bsd'g

pitching moment coefficlent of wing without body
1ift

Dltching moment sbout apex of wing
free—atream Mach number

wing aresa

veloclty of flight

complex potentlal function (o + 1iv)

complex variable (y + iz)

radius of body -

maximm wing chord

distance from apex to section of maximm span
semligpan of flat plate

over—all length of wingbody combination

additional spparent mass of circular cylinder



P gtatic pressure

q free—gtream dynemic pressure

r,8 polar coordlnates |

g local semlspan

Smax maximm semispan

t time

T, velocities in y eand 2z dlrections
X,¥52 Carteslan coordinates

Xc.p. distance from spex to center of pressure
¢ velocity potential

¥ stream function

o angle of attack

€ downwash angle

n,¢ transformed rectangular coordinates
¢ complex variable (n+if)

P density of alr

Subscripts

1) wing

r body

c compresgible

i incompressible
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ANALYSIS
General

The flow around an inclined wing-body combilnation of very low
agpect ratlio may be approximated by consldering it to be two
dimensional in transverse planes (perpendicular to the fuselage
center line). It can be shown as a comsequence of this assumption
that the flow in each transverse plame ls Independent of thet In
the adjacent plames. Conslder a coordinete system moving downward
through the alr with a velocity TUa. The wing-body combination is
now considered to be flying in the negative x—direction with a
velocity U and angle of attack a so that the fuselage center line
colncides with the x—axls of the coordinste system and the plane of
the wing coincldes with the z = O plane. (See fig. 1(a).) The
flow pattern, then, in the arbitrary x = X plane during the time
of the passage of the wing-body combination is approximately similar
to that of the transverse flow around an Infinite cylinder having a
cross gection similar to the local wing-body section. Observed in
this plane, the semispan of the wing and the radius of the fuselags
change with tims as the wlng-body combination moves through the
plane. The resulting unsteady nature of the flow pattern produces
pressure differences between corresponding points on the upper and
lower surfaces of the wing and fuselage. The following enalysis,
therefore, consists of three parts: determination of the veloclty
potential for the two—dlmenslional flow around the wing-body sectidms,
determination of the dlstributlion of load over each section, and
integration of the loading to determine the total 1ift and pitching
moment. Several examples are Included presentling the total 1ift,
center of pressure, and load distrlbution for typical complete wing—
body configurations.

Veloclty Potentilal

It is necessary for the .subsequent anslysis to know the velocity
potential for the unsteady two—~dimensional transverse flow field
around an Infinite cylinder, the cross section of which 1s varying
with time in such a manner that it always remalins similar to the
wing-body section in the =x = x5 plane. Due to the iInfinite rate of
pressure propagation in an Incompreassible fluld, the study of the
unsteady flow of an incompressible fluld 1s greatly simplified since
the flow fleld at any Instant is ldentical to that of the corresponding
steady—etate flow. The first step in the solution of the present
problem, therefore, 1s to determine the velocity potential for the
gteady—state flow around an Infinite cyllnder having a cross section
gimilar to the wing-body section. In this analysls, only wilng-body
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configurations having circular fuselage sections and flat-plate
wings extending along the extension of a dlamster will be treated.
The flow around such a sectlon may be obbained from the transverse
flow around an infinitely long flat plate by application of the
Princlples of conformal mapping using the Joukowskl transformetion.
Thua we conslider the mapping shown in figure 1 in which the ¢
Plane will be mapped onto the X plane by the relation

£ =X+ (1)
where

£ = n+il
and

X = y+lz

The complex potentlal functlion for the flow In the ¢ plane is
(see, for instence, reference 10)

W = @ + 1y' = —1iUa « £2-d2 (2)

where the primed symbols indicate values in the ¢ plane as opposed

to the X plane. It is also shown in reference 10 that, 1f d=2a, +the
flow around a flat plate expressed by equation (2) transforms by
equation (1) into the vertical flow around a circle of radius a having
1ts center at the origin. If 4 1s taken larger than 2a, the flat— -
plate flow transforms Into the desired vertical flow around a cylinder
consisting of a clroular oylinder of radius & with thin fiat plates
extending outward along the extension of the horizontal dlameter to a
distance s from the origin. When the ¢ plane 1s transformed into
the X plane in this manmer, the complex potential for the flow in

the X plane 1s found to be

W=0+V= —iUo:./ @%2-)2—&2 - -an./ (xﬁé)a— <s+a?2>2 (3)

gince the point 4 In the ¢ plane corresponds to the point & in the
X plane. The velocity potential @ for the flow in the X plane may



then be Pfound by squaring equation (3), substituting X =r (cos 8 + 1 sin 8), and solving,
Tus is cbtainod

Q= i% [-— (lf;)r"cos 264a® (1+:—f) :|+ / r‘( l"‘f.f:) +2a%cos o+t (l-li; )2-232 (1-%:) (1+?;) rZcos 20
(1)

where the sign is posltive In the upper half plane (0<9<x) and nsgative in the lower half
plane (n <6< 2x).

Load Distzibution

Once the veloclty potential of a flow fleld is known, the methods of classlcal hydro—
dynamics may be applied to determine the presgure at any point In the field. Consider agaln,
the case shown in Pigure 1 where the wing-body combination 1s plercing the Xx=x, plane. As
previously noted, the flow in the x=x, plane is comeidered to be similar to the two—
dimensional flow surrcunding an infinitely long cylinder having the shape of the wing-body
cross section intersected by the x=x, plane, If the radius of the body a -end the semispen
of the wing s are considered to he fumctions of time, equation (%) may be thought of as
representing the velocity potemtial of the unsteady flow in ths x=x, plane, In the case
of unsteady two—dimensional potentlal flow of en Incompressible fluld, the pressure at any
point fixed in the coordinate system 1s given by (see, for instance, reference 11, p. 19)

’

- % = %’ + % (verw2) + P(t) (5)

It may be seen that this expression reducea to the well—known Beroouli's equation for the
pressure in a steady flow field when the velocity potential 18 invarisnt with time % = 0

and the arbitrary function of time I(t) is a constant.

c99T °"ON ML VOVMN
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For any two corresponding points P; and Pz (fig. 1(b)), so
selected that y1 = y2 and 23 = —Zp, the differential pressure at
any Instent is given by

Ap  pzpa 92 Opy 1 1
—— R —— it ———— — 2 — 2
P b v "5 3 (Ewet) + g (g

=+ 2 %?" —';"' (va2+w2®) + % (viZ+r®) (6)

_ Rz _
3t ot

the points are brought to the wing—body surface

since by reason of symmetry of the flow field. Now if

Vol+wa2 = v 24w, 2

the differentiasl pressure between eny two corresponding points (or the
loading) is given by

2o ' (7)
e 3t
Utilizing the relstionship
P _ X1 dx ;g (8)

dt dx 4t ox

and dividing equation (7) by %"UZ, the loading coefficlent is found
to be .
y L
o By 9% 4 /onds dp da (9)
a @ U U\ 9s ax 0oa dx

The load distribution may now be obteined by substituting the
expression for the velocity potentlal given in egquation (4) into
equation (9) and letting 6=0 or O=r for the wing loading and
r=a for the fuselage loasding. The loadling over the wing ls then
found to be given by
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— (10,

da [ a/a® a
(Ap) ( +a§[25 = FF ]

and that over the fuselage 1s given by

ds at da a /a®
-— {1 ~ + =2 = — cos 26
Ap. ax ( F) dxl: 8 (eﬁ ) J
.(q‘) = ko = | (1)
F a.2
/(l + —— - EE cos 20

In Cartesian coordinates,the loading over the fuselage 1s

(12)

—
ds 1 a4t +2a.dal a2 2y2 ]
Cp)p ax \~ " 5% sax\~ TsET°aZ
— )= Lgl
q 2
2 2
ﬂl+% -4 (L
)

TPotal Lift and Moment

The total 1ift end pitching moment of a complete wing-body
combination may be determined by integrating the loading over the
entire plan—form area. It is convenient to carry out the Integra—
tion by first evaluating the 1ift on one spanwise strip and then
Integrating these elemsntal 1ift forces over the length of the wing—
body combination. The 1ift on a spanwlise strip of width dx is

glven by
= 2q dx[ﬁ(%g)FasinedB+\[s <e§->" d:r‘] (13)

or, In Cartesian coordinates

s [ o [(Bhe] o
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When the indicated operations are performed, the following expressions
for the elemental lift—on._the wing and body are obtaimed.

(15a)
4 2
£(2), o {22 -2[e3G-DD])
dx \ g/ dx st ax 8 8
2
4 i 2 l_?_z
+l|a.s{g'l<l—94- +9‘3L23<l+3->:|}81n—1_——3—
dx 8 ax L. .8 g2 1+ 82
3
(15v)
Noting thet
a a2
2 = 1l - :
Bin—l 8 +sin-]‘ 81-=£
l+5-22- 1+% 2
8 8 (16)

equations (15a) and (15b) may be combined and simplified to glve the
following expression for the total 1ift on an elemental spanwise strip.
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a ds a4 da a8
L Q) - [E6-2)- 26 ]

a

2
da a2 8 a2\2 - B :,
+ 2a8 iz [2 ( - EE)— s <l + 52 sin -]_—F (17)

g2

The 1ift, pltching moment, and center of pressure of the complets
wing-body combination may now be determined by integration of the
1ift of all the elemental strips

AR
M=—fx?‘z<?>dx (19)

= - M
xc.p. I (20)

where the integration interval extends from the most forward point
to the most rearward point of the wing-body configuration. The lift
coefficient, moment coefficlent, and center of pressure may be
determined from equations (18), (19), and (20) by division by
appropriaste constants

50
cm=;%‘;fx%<§>d.x (22)
Top g_g (23)

where S 1s the reference ares end c¢ the reference chord or

length.
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Effect of Compressibillity

In contrast to the well-kmown Infinite-aspect~ratio case where
the pressures on the surface of a wing are influenced by compressi-
bility in a memmer described by the Prandtl-Glsuert relstion, it has
been shown by several Investigators that the Pressures on very low—
aspect—ratio wings and very slender bodies of revolution are
uneffected by compressibility. This reeult has been Found by Jones
(reference 6) for low-aspect—ratio pointed wings at both subsonic
end supersonic speeds. B. Gdthert (reference 12) extended the low—
aspect—ratio rectangular wing theory of Bollay (references 13 and 1k)
to Include the influence of compressibility and found no effect in
the subsonic range. For a very slendsr inclined body of revolution
at subsonic and supersonic speeds, Laitone and Tsien (references 9
and 8) have found that the loading was unaffected by compressibility.
That such 1s also the case for slender inclined, pointed wing-body
combinations follows from consideratiom of the basic differential
equation of linearized compressible flow. In additlon, 1t will be
shown that the aspect-ratio range to which the theory is applicable
becomes larger as the Mach number epproaches ome.

Prandtl (reference 15) has found the linearized differential
equation for the velocity potential of compressible flow to be

3% . 3% _ 3% _
(14,2) S + 3% + i 0 (24)

In the development of the expressiomns for the forces on long slender
wing-body combinations, it has been assumed that %?21 1s so much

2 2
smaller than Z—C—P and g—g that the first term of equation (24)
y2 z )

az
may be neglected. Therefors, so long as the term (1-My2) gl—cg

in the differential equation remeins small, Mach number wlll have
1ittle Influence on the distribution of the velocity potential.
Consequently, Mach number has little effect on the asrodynamic
characteristics of a long slender wing-body combinstion at elther
subsonic or supersonic speeds. It 1s lmmediastely apparent that the
Mach number camnot be increased Indsfinitely, for then the coeffi-—

2

clent of g—g becomes so large that the first term will no longer
X .
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be negligible., The requlired condition will be satisfied, however,

if the body has & pointed nose, the wilng & polnted plan form, and

the entire wing-body combination lles near.the center of the Mach
cone. All these conditlomns, however, correspond to those origlnally
agssumed in the derivation of the expression for the veloclty potential
(equation (4)). Therefore, the present theory is applicable at
supersonic speeds, as well as subsonic speeds, provided the entire
wing-body combination lles near the center of the Mach cone.

It has been shown by Robinson and Young (reference 16) that,
for finite aspect ratlo, the linearized theory of compressible flow
(equation (24t)) remains theorsetically consistent and yields finite
and continuous lift—curve slopes 1n the transonic range. Recent
experiments on triangular wings at transonic speeds support this
contention by indicating agreement between measured. and computed
lift—curve slopes. Therefore, to predict the flow around s body
traveling at or very near sonlc velocity, it 1s correct, unless the

2
term B_ép becomes extremely large, to let My=1 and solye the

X
remaining equation for the potentlial distribution. The remeining
equation ls the two—dimensional Laplace’s equation in the transverse
plane. This means that, although the veloclty potential may vary
in the longltudinal direction, its value at each point may be
determined solely by studyling the flow in the transverse plane
containing the point in question. Therefore, since this is precilsely
the manner in which the potential distribution was obbtained, the
results of the present ananlysls are applicable at transonic speeds.
In fact, the present theory is most applicable 1o wing-body
ccambinations of moderate aspect ratio if the Mach number ls one, since

329

it is then no longer necessary to assume that a—- is very much
2 2 x2

smaller than 3_9 and a—ip .
dy2 dz2

In retrospect, the assumptions related to the study of low-aspect—
ratio polnted bodies and the study of moderate—aspect—ratio pointed
bodles traveling at sonic speed both lead from the Prandtl equa—
tion (equation (24)) to the two—dimensional ILeplace's equation in
the transverse plane although by different means. The low-aspect—

2 29
ratlio theory neglects the term (l—-Moa) -g—xg in comparison wilth g;;
20 % |, - o '
and 3—2 because —a—E is very small; while the moderate-aspect—
2 b

ratlio sonic theory neglects the same term because (l—Moz) is zero.
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Thus the determination of the potential distribution for an inclined
moderate-aspect—ratio wing at the speed of soumd is mathematically
equivalent to the determinatlion of the potential distribution of an
inclined low-espect—ratioc wing in an incompressible fluid.

EXAMPLES

For a glven wing-body configurstion complying with the general
requirements of the present theory, the load distributlior mey be
determined directly by substituting the proper values for the body
radius and wing semispan and thelr rate of change with x into
equations (10) and (11). In addition, closed expressions for the
1ift, pitching moment, and center—cf—pressure poslition of several
elemsntary configurations msy readily be found by simple iIntegration
of the integrals indicated by equations (21), (22), and (23).
Several such examples willl be presented in detall in this section,
and. the resulis will be compared In the following section with those
obtalned from lineaxr theory and from experiment.

Polnted Low-Aspect-Ratlo Wing

Although the assumptions of this note have been used previously
by R. T. Jones in reference 6 to determine the aerodynamic properties
of low-egpect~ratio wings, the load distribution, 1i1ft, and
pltching moment wlll be rederlived for completeness of presentation
and to show a simple application of the preceding expressions. The
aerodynamic propertles of a lowaspect—ratlo wing without fuselage
may be determined by letiting

a

By substitution of these values into equation (10), it follows that
the load distribution along any elemental spanwise strip l1s

@7

The loading (fig. 2(a)) thus shows an infinite peak along the
leading edge of the wing. The total load on an elemental spanwise
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strip is found fram equation (17) to be

NN

Equations (25) and (26) show that the development of 1ift by the
long slender wing depends on an expansion of the sectlons in a
downstream directlon. Accordingly, a part of the wing having
parallel sides would develop mo 1l1ft, while a part having contract—
ing width would have negative 1ift with Infinlte negative loads
along the edges. In the actual flow, however, as R. T. Jones points
out (reference 6), the portion of the wing behind the. maximum cross
gsectlon wlll lie In the viscous or turbulent wake formed over the
surface ahead. Consequently, the iInfinite negative loads will not
be developed on these edges. With the ald of the Kutta condition,
Jones then concludes that no 1ift 1s developed on sections aft of
the maximum cross section. This lg known to be an oversimplifica—
tion of the truth and comnslderable caubtion should be exercised 1In
applying the present results in the case of constant or gradually
contracting width. '

The 1ift coefficient for this wing 1ls found by integration of
the load on the elemental strips between the leading edge and the
wildest sectlon as indicated by substituting equation (26) into
equation (21)

cf Smax
1 ds Lsa o bepey®  x
CL=§‘/O‘ hntcr,s——idx=—s— sds-aa, S —eAa, (27)
hepax®
where c¢! 1s the effective wing chord and S = A, the aspect

ratio. It 1s seen that the lift—curve slope %z——l'- depends only

on the aspect ratlo. It should be noted, however, that the actual
1ift force depends only on the spsn and angle of attack and not on
the aspect ratlo or the area.

By similar substitutlion and integration by parts of equation
(22), the piltching moment about the leading edge 1s

ct .
1 ds x ¢!t hemax® 1l-(sa)m:l x ct [
Cm=_s._c“[ hﬂa,s—xdx:._ﬁa__q,[_____——_ = e = e Ay .._.
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1 ot
where (52)m = = f s82dx and where moments tending to produce
o

a nosing-up rotatlion are considered positive, The center—of—
Pressure locatlion is then found by dividing the moment coefficlent
by the 1ift coefficient as indicated in equation (23).

Xc.p. Cm o [l_h-(sa)m:l o! I:l (Ba)m]

© ==l—E-I._zz’-_ SA Nl ~ Bmax?

(29)

For a more specific example, comslder & triangular wing moving

point foremost. Then since (s2), = % Spey. @nd of=c, the pitching—
moment cocefficient and center—of-pressure position are glven,

. %l -
regpectively, by Cp = —;—‘- Ao and 5 P = -§— . The center of pressure

is seen to be st the two—thlrds chord polint or the center of ares.

Pointed Slendsr Body of Revolutlon

The present method for treatlng the flow around long slender
bodles was introduced by Munk in reference 5 for the determination
of the distribution of forces along the longlitudlinal axis of a body
of revolution (airship hull). In the present mection, these results
will be rederived., In addition, expressions for the total 1ift,
pltching moment, and load distribution will also be presented.

For the slender pointed body of revolution, the following rela-—
tions exist:

l
i3
gl&

where % 1s not necessarily constant, If these values are

substituted into equations (11) amd (12), the loading distribution
along any elemental strip is

(%’L)F=8a§sme=§¢§ [-Z (30)
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The load distribution (fig. 2(b)) is thus seen to be elliptical,
being zero at the extremities of a horizontal diameter and a maximum
at the midpoint. The total load on an elemental spanwise strip 1s
found from equation (17) to be

d /L da dB
_— = = I —_— = —_—
dx<q>q hhaqadx 20q —— (31)
where B 1s the local cross—sectlon area. It 1s seen that equation
(31) 1s identical to equation (26) for the integrated load on an
elemental spanwlse strlp of a triangular wing, even though the
distribution of load In the .two cases 1s widely different. In
contrast, however, to equation (26), which is to be applied only to
wings of increasing span, equation (31) may be applied to bodies of
revolution in regions of either increasing or decreasing radlus,
since the Kutta condition does not apply to bodies of rsvolution.
Thus, in general, the lift and pitching moment of a body of revolu—
tion are different from those of a wing of identical plan form;
however, 1if the maximum diameter of the body of revolution is at

the base sbation, its 1ift and pltching moment are.equal to those

of a wing of identical plan form at the same angle of attack.

As before, the 1lift coefficlent will be determined by subatituling
equation (31) into equation (21). Taking the area of the base cross
section By as the reference area and Iintegrating over the length
of the body 1 +the 1lift coefficilent is found to be

g
1 a8

= —— — dx = 2

L %Izmu e, (32)

since the cross—section area B is at x=1 and zero at x=0.
Tt is thus seen that the 1ift of a slendsr body of revolution depends
only on the cross—ssection area of the base, and is independent of

the general shape of the body. A possible effect of viscosity 1s
indicated by such a relationship since the effective base area of

the body will be larger than the true base area by an amount
dependent on the boundary—layer thickness. Therefore equation (32)
will probably temd to underestimate the true lift—curve slope,
particularly at lower Reynolds numbers where the boundary—layer
thickness 1ls greatest.

By similar substitution and Integration by parts, the moment
coefficient about the leading edge is
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1

= B oix = _ 3
Gm—B-bI 2cx,dxxdx —2m< o (33)

where By is the mean cross—section area .(i.e., the volume of the
body divided by the length). The center—of—pressure location is
then found through use of equation (23) to be

Top. B _, n D

For a more specific example, conslder a cone moving point foremost.-
The base cross—sectlon ares is

By = 782
The mean crogse—gection ares is

1 .2
= — N8
Bm 3
The center of-pressure 1is thus seen to be at the two-thirds point as

would be anticipated- by the conicael nature of -the load distribution
for this case.

Triangular Wing With Conlcal Body

The first example of a wing-body combilnatlion to be comsidered
is that of a conlcal bodg mounted on a triangulsr wing so that thelr
vertices coinclde, The goeometry of such a configuration requires
that

a _ da/dx Cx
8 ds/dx
da da
where both iz and = are conatants, If these values are

substituted into equations (10) and (11) as described in the two
preceding examples, the load dlstribution along any elemental strip
on the wing is given by

1okt —oxt 22
(@l _-_1;{,;%_% I= for a<y<s

2
4 J 4 B4
1+k™ ~ —= ( 1+k -z
f 8 v

(352)
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and on the body by

A ds
<TPF '='ha'E/(l+k2)2—h§ for o<y <a (35b)

Figure 2(c) shows the. load distribution on a typlcal wing-body
comblnation of this type together with the load distribution on the
same wing without body.

The Integrated load on an elemental strip is

a /L ds [ 1 ' ., 2k ds
EG) a4 = lbnags = 1+ + e [2k(1—k2)-(1+k2)2sm 11;52:]} lma.qu(1+R)
where . (36) :

1 2 _ 2k
_ 4 12 1
R=k%*+ B [21:(1 k2)=(1+k2)" gin i ]

The 1lift coefficient for the entire conical wing—body eombination is
then

Cp, = 5 Aa (1+R) = Cp (1+R) , (37)

where CLW is the 1ift coefficient of the basic triangular wing.

The area and aspect ratio of the wing-body configuration are
considered to be equal to those of the basic wing. Due to the
radial nature of the lines of constant pressure, the center of
rressure lies at the two—thirds chord point

Xec.p., 2 .
e~ 3 (38)
The moment coefficient 1s then obviously
T
Cp = =3 Aa(14R) = me(l+R) (39)

where, simlilar to before, me represents the pltching moment of
the basic wing. Figure 3 shows the variation of C1,./C1 with

ratio of body diameter to wing span for this type of wing-body
combination. While the wing alome and body alone have identical
lift—curve slopes since the wildsst section 1s at the tralling-edge,
the 1lift—curve slope of the wing-body combination is always less
then that of elther a wing or body alone. The maximum loss of
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lift—curve slope (about 8 percent) occurs when the body—radius
wing-gemispan ratio is approximately 0.7.

Triangular Wing on a Semi~-Tnfinite Cylindrical Body

The next example to be considered 1s that of a triangular wing
mounted on a2 semi—infinite cylindrical body. The essential relation—
ships to be used are that '

= =0
dx

and that ds/d.x is constant. By using these relationships as in the
previous examples, it is found that no 1ift is carried on the body
shead of the leading edge of the root chord. Behind this point,
however, lift 1s carried on both the wing and body and 1s distributed
on any elemental strip of the wing in a manner described by

ds a4
ha?&(l--s—")

(‘2_13)" = for a<y<s (40a)
and on the body by
) <A—I-)—) = for o<y<a (Lob)
Y =¥=

The load distribution at one longitudinal statlon of a typical wing—
body configuration of the type coneidered In this example ig shown
in figure 2(d). For purposes of comparison, the load distribution
over the same wing without the body 1s also indicated in figure 2(4d).

The integrated load on an elemental strip is given by

O 8CE) @

By integration along the length of-the body, the 1ift coefflclent for
the complete wing-body combination, based on the area of the basic
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triangular wing without fuselage is found to be

2 \2 ’ 2 \2
(o ) m o) w

It may be seen from equation (42) and figure 3 that the addition of

a geml—infinite cylindrical body to a triangular wing produces a

loss 1In lift—curve slope Just as in the preceding example with the
conical body. With the cylindrical body, however, the lift—curve
8lope has no minimum value, but continues to decrease as the radius—
semispan ratio lncreases until finally, when the latter ratio is ome
(corresponding to a body without wings), the lift—curve slope is zero.
This 1s as 1t should be, since a semi—infinite cylindrical body has
zero lift—curve slope. The moment coefficient about the vertex of the
baglc triangular wing is

ol a8

Cr 1 -4 a4) (1 y 2% a4>
m =T T3 B Smax3+3smax4=cmw a Bmax'3+3smaxz

(43)

The center—of—pressure position of the complete wing-body combination
1s given by )

a 2

Smax

LY i ()

373\, 2

Smax

Since the center of pressure of the wing alone 1ls at the two—thirds
chord point, it may readily be seen the second term of equation (k)
represents the change due to the addition of the body. Figure k4
shows the varlation of the center—of—pressure position with the ratio
of body radius to wing semispan. In contrast to the constant center—
of—-pressure position of the previous example for the triangnlar-wing,
conical—body combination, the center of pressure of the triangular
wing, seml—infinite cylindrical body combination moves rearward as
the body radius becomes larger with respect to the wing semispan.

Xc.p.
c

Triangular Wing on a Polnted Body

The case of a itriangular wing mounted on a pointed body, closed
in an arbltrary manner at the nose but cylindrical along the wing
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root chord, may be studled by combining the results of two previous
exemples. The portion of the wing—body combination ahead of the
leading edge of the wing root may be consldesred to be equivalent to
the arblitrary body of revolution treated In the second example. The
portion:of - the wing—body combinatlon aft of the leadling edge of the
wing root is equivalent to a trlangular wing mounted on & semi—
Infinite cylinder as discussed in the precsding example. The load
distributlon and the integrated load on any elemsntel spanwise strip
are then the same as those glven in the corresponding examplse.

The 1ift coefficlent-is found by adding the 1lift-forces of the
component parts of the wing—body combination and dividing by the
dynamic pressure ¢ and the characterlstic area, again taken to be
the ares of the hasic tria.ngula.r wing. The 1i1ft coefflicient is then
found to be :

2 2

= X a a2 \ _ 4
Cp, =5 Aa(l - >—CLW 1~ —2 a) (45)

Smax® Smax* Smax®  Smax*

Figure 3 shows the varlation of the 1lft-curve slope wilth body—radlus
wing-semispan ratio. A comparison of the lift-curve slopes shows
that-the loss In the 1ift of a tria.ngular wing resulting from the
addition of a body having a polnted nose is much less than that
resulting from the addition of & semi—infinite body.

The moment coefficient for this wing-body combination may be
found in a manner simllar to that used 1n finding the 1ift coeffi-
clent, taking care to transfer the moments of both component parts
to the same axls. The moment coefficlent ebout the vertex of the
basic triangular wing ls

oA a8 a4=> 2o \:as By /1 & ) :|
Cp = — o (1 = b +3 -~ - A
3 Smax® Smax*/ 8 l8max T \° Smax

. a% 21ta.|:a3 By /1 1 a.) :]
—me< sma.x1+dsma. T8 [Bmax TN\ +Bma.x
(46)

where & represents the radius of the cylindrical portion of the
fuselage, 1 the over-all length of the wing—body combination, and
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B, +the mean cross—sectional area (1.8., volume divided by length)
of the portion of the body ahead of the leading edge of the wing
root. ) ’ '

COMPARTSON WITH OTHER RESULTS

As shown In the preceding sectioms, 1t is a comparatively simple
matter to calculate the load distribution, 1ift, and center of
pressure of complete wing-body configurations by means of the present
theory. It has been shown that the theory is most applicable at Mach
numbers near one or for conflgurations having very low-aspect~ratio
wings., Its accuracy at other Mach numbers or at largsr aspect ratios
can best be assessed by comparison wlth experiment or more nearly
exact theory, where avallable.

Comparisons with available theoretical and experimental 1if+t—
curve slopes of triangular wings of varying aspect ratioc at super—
sonic and subsonic speeds are shown in figures 5(a) and 5(b),
respectively. In the supersonic range (fig. 5(a)), the linear theory
golution of Stewart, Brown, and others (references 17 and 18) for
the variation of lift-curve slope wlth aspect ratio is shown for
Mach numbers of 1.0, 1.2, and 1.%. At a Mach number of 1.0, it is
seen that the present theory exactly predicts the linear theory
value of the lift—curve slopes of trienguler wings of any aspect
ratio. Increasing the Mach number decreases the degree of correla—
tion at the larger aspect ratios. In summary, this figure indicates
that the present theory ls very accurate for slendsr wings at low
supersonic speeds where the wing is near the center of the Mach
cons, and decreases in accuracy as the wing becomes larger with
respect to the Mach cone.

In the subsocnic case (fig. 5(b)), no liftingsurface theory
for the triangulsr wing comparable to the supersonic triangular—
wing theory exists, and all comparisons will be made directly with
experiment. Three test points from reference 19 are shown for
wings of aspect ratio 0.5, 1.0, and 2.0 tested at very low Mach and
Reynolds numbers in the Langley free—flight tunnel. As in the
supersonic case, the accuracy 1s best at very low aspect ratlos
and decreages as the aspect ratlio Increases.

A comparison between lift—curve slopes for a complete wing—
body combination consisting of a conical body and a triangular
wing calculated by the present theory and by supersonic conical—
flow theory is shown in figure 3. A curve presented by Browne,
Friedmsn, and Hodes (reference 20) for the lift—curve slope of a
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wing-body configuration consisting of a conical body having a fixed
redius of 0.1322 the Mach cone radius and a triangular wing of
varying span 1ls shown by the dotted line in figure 3 together with
the corresponding curve obtained by the present theory, These two
curves never differ by as much as 1 percent, indlcating that the
present theory and the conical—flow theory are In close agreement
in predicting the lift-curve slope at supersonic speeds of a wing-—
body combination consiasting of a slender conlcal body and a low—
agpect—ratio triangular wing.

Ameg Aeronautlcel Laboratory,
National Advisory Commlittee for Aeromautlcs,
Moffett Fleld, Calif+

APPENDIX
Correction to Loading on Portion of Fuselage
Aft of Wing Trailing Edge

A mothod for the calculation of the serodynemlc loading on the
entire surface of a slender pointed wing—body combination has been
presented based on the assumption that the flow In each transverse
plane is independent of that in the adjacent planes, It was noted -
that the results so obtained were not applicable to the portion of
a wing situated behind the widest sectlion because the flow in thias
region was influenced to & prohibitive degree by the downwash fileld
of the sectlions further forward. For the sams reason, the results
are also inapplicable to the portion of the fuselage aft of the
wing trailing edge, particularly when the fuselage diameter is
gmall in comparison with the wing span. Since the fuselage 1s
usually extended behind the trailing edge of the wing, it is desir-
able to determine a correction to apply to the loading expressions.

With assumptions more restrictive than those of the main body
of this-mote, it is possible to obtain an estimate of the corrected
loading on the fuselage afterbody. The necessary agsumptions are
thet-the downwash velocity in the vicinity of the fuselage wilth
fuselage removed is known, and that the downwash veloclty remalns .
constant throughout—the entire transverse plane at each longitudinal
gtation. It is immediately apparent—that the latter assumption 1s
not entirely correct, but it is true that the downwash velocity is
approximately constant over a regilon of limited lataeral extent-at
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each longitudinal statlion. Since the forces on a body are produced
predominately by the flow field near the body, thls assumption
should bs & valid one as long as the fuselage sections remain in
regions of relatively constant downwash veloclty 1n each transversse
plane. Thisg means that the fuselage diameter must be small in
comparison with the wing span.

With the foregoing assumptions, the loading on the fuselage
afterbody may be determined by an extension of the present method.
Consider, as in figure 1(a), the flow in the transverse plane as
the fuselage afterbody is pilercing the x=xp plane. The flow field
corresponding to that of figure 1(b) would then be that of the
vertical flow around a circular cylindsr. As in the previous
analysis, the fuselage radius would, in general, appear 1o be
varying with time. In additlion, since the downwash veloclty varies
with dlstance behind the wing, the velocity of the vertical flow
would also appsar to be varyling with time. The correct expression
for the 1ift on each strip across the fuselage may then be obtained
by substituting the local angle of attack o—€ for the airplane
angle of attack a in equation (31) and adding a correction term
for the effect of the longitudinal gradient of the downwash velocity.
The latter correction term may be determined very simply using the
additional apparent mass concept. The correction to the 1lift force
on an elemental strip of unit width across the fuselage afterbody
is then given by

€
Ad_(.;'.)q:mg‘r.:_zsqg'_ (A1)
dx\a dt dx

In this equation, the addltional apparent mass of a unlit length of
a clrcular cylinder of crosg—sectlion area B 1is (see, for instance
reference 11, p. T7T)

m = pB - (a2)

and the vertical veloclty In any transverss plane 1is
w = U(a—e) (A3)

where e 18 the downwash angle, The total 1ift on each elemental
strip of unit width of the fuselage afterbody 1s then

%@-)q;eq [w—a%—sg] (ak)
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Since the downwash angle numerically equals the angle of attack on
the wing surface immediately shead of the wing trailing edge and
decreases in value as the dilstance from the trailing edge Increases,
it 1s apparent that € has a positive value and that %’E hag &
negative value, Thus, effects of downwash angle in equation (Al)
tend to cencel each other. Another item which should be mentiloned
is that the downwash behind wings varies considerably with Mach
number. Consequently, compressibility will affect the 1lift on
fuselage afterbodles. -

At subsonic speeds, an upwash exlsts over the portion of- the
body extending ahead of the wing, although this upwash is of
considerably smaller magnitude then the downwash behind the ‘wing
for the slendsr pointed wings consldered here, ZXEquation (AL) may
be applied to dstermine the magnitude of the corrected loading
taking Into accoumt the upwasgh.

By using methods similer to those developel In the main body
of this note rather than the shorter additlional apparent mass
methods, it can be shown that the load distridbution across each
gtrip of the fuselage afterbody is elliptic.
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Figure 2.— Load distributions over spanwise sections of four
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Figure 3.— Liff-curve slope ratios for three wing-body configu—-
rations.
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